The TWEAK–Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice

نویسندگان

  • Ashwani Mittal
  • Shephali Bhatnagar
  • Akhilesh Kumar
  • Estelle Lach-Trifilieff
  • Sandrine Wauters
  • Hong Li
  • Denys Y. Makonchuk
  • David J. Glass
  • Ashok Kumar
چکیده

Skeletal muscle atrophy occurs in a variety of clinical settings, including cachexia, disuse, and denervation. Inflammatory cytokines have been shown to be mediators of cancer cachexia; however, the role of cytokines in denervation- and immobilization-induced skeletal muscle loss remains unknown. In this study, we demonstrate that a single cytokine, TNF-like weak inducer of apoptosis (TWEAK), mediates skeletal muscle atrophy that occurs under denervation conditions. Transgenic expression of TWEAK induces atrophy, fibrosis, fiber-type switching, and the degradation of muscle proteins. Importantly, genetic ablation of TWEAK decreases the loss of muscle proteins and spared fiber cross-sectional area, muscle mass, and strength after denervation. Expression of the TWEAK receptor Fn14 (fibroblast growth factor-inducible receptor 14) and not the cytokine is significantly increased in muscle upon denervation, demonstrating an unexpected inside-out signaling pathway; the receptor up-regulation allows for TWEAK activation of nuclear factor kappaB, causing an increase in the expression of the E3 ubiquitin ligase MuRF1. This study reveals a novel mediator of skeletal muscle atrophy and indicates that the TWEAK-Fn14 system is an important target for preventing skeletal muscle wasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The TWEAK-Fn14 System: Breaking the Silence of Cytokine-Induced Skeletal Muscle Wasting

The occurrence of skeletal muscle atrophy, a devastating complication of a large number of disease states and inactivity/disuse conditions, provides a never ending quest to identify novel targets for its therapy. Proinflammatory cytokines are considered the mediators of muscle wasting in chronic diseases; however, their role in disuse atrophy has just begun to be elucidated. An inflammatory cyt...

متن کامل

The effect of high-intensity exercise training on gene expression of tweak and Fn14 in EDL muscle of aged and adult mice

Muscle atrophy is one of the consequences of aging and sports activities may prevent it. The aim of this study was to evaluate the effect of high intensity interval training on gene expression of Tweak and Fn14 in EDL muscle of aged C57bl/6 mice. For this purpose, 28 male C57bl/6 mice aged (n=14) and adult (n=14) were assigned in two groups of training (n=7) and control (n=7). After one-week fa...

متن کامل

TWEAK/Fn14 Signaling Axis Mediates Skeletal Muscle Atrophy and Metabolic Dysfunction

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) through binding to its receptor fibroblast growth factor inducible 14 (Fn14) has been shown to regulate many cellular responses including proliferation, differentiation, apoptosis, inflammation, and fibrosis, under both physiological and pathological conditions. Emerging evidence suggests that TWEAK is also a major muscle wasting cyto...

متن کامل

The effect of decreased physical activity on the expression of muscle atrophy-related genes after resistance, endurance and combined exercise training

Introduction and purpose: Decreased physical activity due to sciatic nerve ligation (SNL) cause muscle atrophy. The purpose of the present study was to investigate the effect of decreased physical activity in the form of spinal nerve ligation (SNL) on the expression of muscle atrophy-related genes (TWEAK and Fn14) after resistance, endurance and combined exercises. Materials and Methods: Thirty...

متن کامل

TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration.

Inflammation participates in tissue repair through multiple mechanisms including directly regulating the cell fate of resident progenitor cells critical for successful regeneration. Upon surveying target cell types of the TNF ligand TWEAK, we observed that TWEAK binds to all progenitor cells of the mesenchymal lineage and induces NF-kappaB activation and the expression of pro-survival, pro-prol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 188  شماره 

صفحات  -

تاریخ انتشار 2010